Technology ID
TAB-1910

Cell Based Immunotherapy

E-Numbers
E-312-2008-0
Lead Inventor
Tran, Dat (NIAID)
Co-Inventors
Shevach, Ethan (NIAID)
Applications
Therapeutics
Research Materials
Diagnostics
Therapeutic Areas
Immunology
Development Status
The purification protocol has been proven simple and efficient in a laboratory setting.
Lead IC
NIAID
ICs
NIAID
The invention hereby offered for licensing is in the field of Immunotherapy and more specifically in therapy of autoimmune diseases such as Type I diabetes, multiple sclerosis, rheumatoid arthritis and systemic lupus erythematosis and immune mediated allergies such as asthma as well as in transplantation-related disorders, such as graft acceptance and graft-versus-host-disease (GVHD).

While the role of FOXP3+ regulatory T cells (Tregs) in the maintenance of self-tolerance and immune homeostasis has been established and thus their use in adoptive immunotherapy has been contemplated, there is still no good way to purify and expand these cells in an efficient and reproducible manner ex vivo for use in human therapy. The subject invention provides a method that allows such purification for use in expansion cultures to generate sufficient numbers of cells and purity for cell-base immunotherapy. The method is based on the finding that Tregs selectively express Latency Associated Peptide (LAP) and CD121b (IL-1 Receptor Type 2) and on the ability to selectively separate these cells from other immune cells that are potentially hazardous, through the use of magnetic particles which specifically bind to either one of these two surface molecules and selectively separate those cells from the non-Tregs.
Commercial Applications
  • Immunotherapy, primarily for autoimmune diseases such as Type I diabetes, hematologic disorders such as aplastic anemia, transplantation-related disorders, such as graft acceptance and graft-versus-host-disease (GVHD) and allergic diseases such as asthma.
  • Facilitating detailed studies and analysis of human Treg function in health and disease.
  • Assay to differentiate thymic-derived versus peripheral-derived FOXP3+ Tregs.
  • Potential assay to monitor disease status, progression and prognosis such as early detection or response to therapy of GVHD after transplantation, solid organ graft rejection post-transplantation or a flare-up of systemic lupus erythematosus.
Competitive Advantages
  • The method of purification of FOXP3+ Tregs for human treatment may be superior in efficiency and practicality than currently existing techniques. After the magnetic separation, the final product contains more than 90% fully functional FOXP3+ Tregs. This novel protocol should facilitate the purification of Tregs for both cell-based therapy as well as for detailed studies of human Treg function in health and disease. It is important to note that most of the treatments for specific autoimmune diseases (i.e. hormone replacement therapy, enzyme replacement therapy, corticosteroids, NSAIDs, plasmapherisis, immunosuppressants and intravenous immunoglobulins) do not constitute cure for the specific diseases. Immunotherapy with Tregs has a potential to provide cure or prolonged remission for many of these diseases.
Licensing Contact:
Prabhu, Yogikala
yogikala.prabhu@nih.gov